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Estimating Model Parameters



Learning Objectives

1. Understand how the best linear regression line is solved for.

2. Interpret the regression coefficients and understand the
limitations.

3. Understand the variance breakdown, what is explained by the
model, and what is not.

4. Understand the coefficient of determination and its limitations.
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Estimating Parameters for the Simple Linear Regression

▶ We want the best possible line, as defined by β0 and β1.

▶ We will use estimators β̂0 and β̂1, which gives ŷ = β̂0 + β̂1x .

▶ The mistakes we make we call residuals, and denote this ei = yi − ŷi .
▶ The idea is to minimize the squared residuals, given by ∑n

i=1 e2
i .

▶ Doing this results in

β̂0 = y − β̂1x

β̂1 =
∑n

i=1(xi − x)(yi − y)∑n
i=1(xi − x)2 .
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Regression Parameter Interpretation

▶ Recall that β0 is the intercept of the regression line.

▶ β̂0 is the best guess we have at the intercept, given the data.

▶ If X = 0, this is the value that we would except Y to take on.

▶ Note, X = 0 does not always have a substantive meaning.

▶ Recall that β1 is the slope of the regression line.

▶ β̂1 is the best guess we have at the slope, given the data.

▶ For a 1 unit increase in X , we expect that Y will change by β̂1.

▶ Be careful for extrapolation and for bad model fits.
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Error Sums of Squares
▶ We call the sum of squared residuals the error sum of

squares, SSE = ∑n
i=1 e2

i .

▶ This is the variation left unexplained by the model.

▶ We can estimate the variance, σ2, as σ̂2 = SSE
n−2 .

▶ We can also consider the total variation in Y , which is given
by

SST =
n∑

i=1
(yi − y)2 = S2

y .

▶ We will always have that SSE ≤ SST.
▶ The difference, SST − SSE, is the variation explained by the model.
▶ This is called the regression sums of squares, denoted SSR.
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The Coefficient of Determination

▶ If we consider the ratio of the variance that is explained by the
model we write

r 2 = SSR
SST.

▶ This is the r-squared value, or the coefficient of determination.
▶ It gives the proportion of variance in Y which is captured by the model.
▶ It is typically used to indicate the strength of the relationship, with

values closer to 1 being preferable.

▶ Note: The coefficient of determination has received a lot of
criticism. It is probably best to steer largely clear of it!
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Summary

▶ Linear regression estimates are determined through the least
squares procedure.

▶ There is a closed form expression for both the slope and the
intercept.

▶ The intercept gives the value we expect to observe at X = 0
and the slope captures the expected change in outcome for a
unit change in X .

▶ The total variance can be decomposed into the error sum of
squares and the regression sum of squares.

▶ The proportion of variance which is explained by the model is
called the coefficient of determination.
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